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Is large-scale CCS realistic?

Recent study by Ringrose & Meckel (2019) on offshore global CO, storage resources
https://www.nature.com/articles/s41598-019-54363-z

* Uses basin geo-pressure approach

* Projected growth of CO, injection
wells from historical hydrocarbon well
developments

» Captures ‘industrial maturation’

OFFSHORE SEDIMENTARY THICKNESS {

phases for global CO, storage Meters
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Main Conclusion: s
: ' LARGEST PETROLEUM FIELDS
 We will need ~12,000 CO, |~ Offshore

injection wells by 2050 to ~ Onshore
achieve 2Ds goal

i Global distribution and thickness of sediment accumulations on continental margins,
with largest oilfields and main river systems (Ringrose & Meckel, 2019)

Each continental ‘CCS hub’ will need
100-200 wells in the next decade
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Key questions for storage scale-up pressure (MPa)
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Much discussion about the ‘do-ability” of large-
scale storage:
, _ - Pore pressure
1. Many nations have mapped storage resources: 1660 Ve

— \ertical stress

* Mapped North Sea basin CO, storage
resource is 160 Gt

< Minimum stress

Fracture
Pressure

* North American storage resource

is >2400 Gt
Qilfield with
* So far, we have only used 0.02 Gt natural
of these resources (globally) k;:‘e’;’:l:‘rcey Depressurization \
pathways?

2. However, large-scale storage will
require a pressure management

approach Domain for large-
scale storage

re-pressurization

5000

Ringrose & Meckel (2019); minimum stress data from Bolaas and Hermanrud (2003)
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Basin Geo-pressure Concept

Review of basin pressure data from Norway datasets
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Scenarios within the geo-pressure framework

- Let's hypothesize some scenarios within the basin geo-pressure framwork
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Pressure management approach for CO, injection projects

» Assumption: Initial and final pressure per well can be used to estimate capacity
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Fig. 5 Idealized CO, storage project lifetime pressure plots for two
contrasting aquifer units assuming the same initial pressure conditions.

Generic ‘basin AP’ approach:

Integration of the injectivity equation over the
project lifetime:

f
Vproject = I¢ [pwell — Dinit T f App(tp)| + Fp
l

where,

Voeat = €stimated volume stored
. = injectivity

Pl = injection well pressure
Pt = initial reservoir pressure

App(ty) = characteristic pressure function

Fy = volume flux boundary condition

6 |

Open



Validation of method for the Snahvit (Tubden) case

» Analytical function fitted to CO2 injection data for Snehvit FH2 injection (Tub&en formation)
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So, what about the geomechanical risks” ,;
100 j |
Informative case study in the Snghvit CO2 injection case: I
. . . 90F
Chiaramonte et al. (2015) J. Geophysical Research: Solid Earth
Significant uncertainties in stress field estimates, but group modelled — 80
fault-slip risk for range of scenarios = il o
. . . R é ______ Hmax:
Main storage issue is to be sure about the most ‘slip-prone’ faults 5l A (upper bound)
60+
50 I -4
| Simac = 43 (I bound
Modelled fault traces color-coded by the extra pressure, P, (MPa), aol [ ST (lower bound)
necessary to initiate slip in base-case scenario (Chiaramonte et al. 2013) 'S, = 43
S . : . .
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7.947 - - . """"""""""" . S— S B N - . 30 Figure 7. Representation in a stress polygon of the possible magnitudes of
5 - Injection well ; - B 5 SHmax (red dotted line) for a given S;,i,, (43 MPa) at the top of the Tubéen 1
7946 — Fau|t13& """" """"""" . """""" S /m:’/ """""""" """"" NS _ 55 (2683 m), for a given pore pressure (29.6 MPa) and assumed coefficient of
57945_) __—’_'——A_ ' friction (z = 0.6). The green line corresponds to the possible magnitudes
. s | ——— ‘ . 115 of SHmax as a function of Spmin that is required to cause drilling-induced
7944 - et e s W S I ITIT RS e e . - tensile fractures (DITF) in a vertical well, considering temperature and
: ' ' : ' j ' : : : mud-weight effects. The Simax range was derived from equations (1) and (2).
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In-depth analysis of stress-pressure-strain interactions

Minimum stress is estimated from leak-off tests (LOT) and ideally Determination of P from injection time-series

an extended X-LOT (Raaen et al. 2006; Bohloli et al. 2017) - Plot of injection pressure versus rate for KB-503, In Salah.

+ Should be fairly accurate measurement, but: - Crossover point and blank-rate interval reveal the in situ

- Not always available in the rock formations of interest fracture pressure

- Often reglonal/nearby tests are used B. Bohloli et al. / International Journal of Greenhouse Gas Control 61 (2017) 85-93

— Simple estimate of o, Injection pressure vs rate for well KB503, In Salah (2010)
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Fig. 1. A schematic Minifrac test showing pressure and rate versus time. For a leak- 0 v v .
off test, injection time is much shorter than that shown in the figure. LOP = leak-off
pressure, FBP=fracture breakdown pressure, FPP=fracture propagation pressure, 0 10 ) 2_() 30 40 50
ISIP = instantaneous shut-in pressure, FCP= fracture closure pressure, Fracture dom- Injection rate [mm5Cfd]

inated vs. reservoir dominated flow range are indicated by arrows.
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Summary

1. Phil and Tip have a ‘can-do’ attitude to global CCS'!

2. Argue for a basin pressure management and optimization approach
3. Most projects (Class A aquifers) will not have serious pressure limit problems

4. The projects that do have pressure limits (Class B aquifers) will need careful
pressure management during the operational lifetime

5. For geomechanical risks, stress-aligned slip-prone faults/fractures are the
top issue

6. Accurate determination of the stress field and stress tensor is usually a big
challenge for CO, storage projects
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