Handling pressure constraints and geomechanical limits for large-scale CO₂ storage projects

Philip Ringrose

Equinor Technology, Digital and Innovation & Norwegian University of Science and Technology (NTNU)

CGF

SFI Centre for Geophysical Forecasting

Is large-scale CCS realistic?

Recent study by Ringrose & Meckel (2019) on offshore global CO₂ storage resources https://www.nature.com/articles/s41598-019-54363-z

- Uses basin geo-pressure approach
- Projected growth of CO₂ injection wells from historical hydrocarbon well developments
- Captures 'industrial maturation' phases for global CO₂ storage

Main Conclusion:

We will need ~12,000 CO_2 • injection wells by 2050 to achieve 2Ds goal

Each continental 'CCS hub' will need 100-200 wells in the next decade

Global distribution and thickness of sediment accumulations on continental margins, with largest oilfields and main river systems (Ringrose & Meckel, 2019)

Key questions for storage scale-up

Much discussion about the 'do-ability' of large-scale storage:

- 1. Many nations have mapped storage resources:
 - Mapped North Sea basin CO₂ storage resource is 160 Gt
 - North American storage resource is >2400 Gt
 - So far, we have only used 0.02 Gt of these resources (globally)
- 2. However, large-scale storage will require a pressure management approach

Ringrose & Meckel (2019); minimum stress data from Bolaas and Hermanrud (2003)

Pressure (MPa)

Open

Basin Geo-pressure Concept

Review of basin pressure data from Norway datasets

Scenarios within the geo-pressure framework

• Let's hypothesize some scenarios within the basin geo-pressure framwork

Pressure management approach for CO_2 injection projects

> Assumption: Initial and final pressure per well can be used to estimate capacity

contrasting aquifer units assuming the same initial pressure conditions.

Integration of the injectivity equation over the

$$_{ll} - p_{init} + \int_{i}^{f} A p_{D}(t_{D}) \bigg] + F_{b}$$

= estimated volume stored = injection well pressure = initial reservoir pressure = characteristic pressure function = volume flux boundary condition

Validation of method for the Snøhvit (Tubåen) case

> Analytical function fitted to CO2 injection data for Snøhvit FH2 injection (Tubåen formation)

Estimated P-frac

So, what about the geomechanical risks?

- Informative case study in the Snøhvit CO2 injection case: Chiaramonte et al. (2015) *J. Geophysical Research: Solid Earth*
- Significant uncertainties in stress field estimates, but group modelled fault-slip risk for range of scenarios
- Main storage issue is to be sure about the most 'slip-prone' faults

Modelled fault traces color-coded by the extra pressure, P_{cp} (MPa), necessary to initiate slip in base-case scenario (Chiaramonte et al. 2013)

Figure 7. Representation in a stress polygon of the possible magnitudes of S_{Hmax} (red dotted line) for a given S_{hmin} (43 MPa) at the top of the Tubåen 1 (2683 m), for a given pore pressure (29.6 MPa) and assumed coefficient of friction ($\mu = 0.6$). The green line corresponds to the possible magnitudes of S_{Hmax} as a function of S_{hmin} that is required to cause drilling-induced tensile fractures (DITF) in a vertical well, considering temperature and mud-weight effects. The S_{Hmax} range was derived from equations (1) and (2). The blue dot represents the arbitrarily chosen S_{Hmax} magnitude for the base case scenario ($S_{\text{Hmax}} = 54$ MPa).

In-depth analysis of stress-pressure-strain interactions

Minimum stress is estimated from leak-off tests (LOT) and ideally an extended X-LOT (Raaen et al. 2006; Bohloli et al. 2017)

- Should be fairly accurate measurement, but:
 - Not always available in the rock formations of interest
 - Often regional/nearby tests are used

Fig. 1. A schematic Minifrac test showing pressure and rate versus time. For a leakoff test, injection time is much shorter than that shown in the figure. LOP = leak-off pressure, FBP = fracture breakdown pressure, FPP = fracture propagation pressure, ISIP = instantaneous shut-in pressure, FCP = fracture closure pressure, Fracture dominated vs. reservoir dominated flow range are indicated by arrows.

Determination of P_f from injection time-series

- •
- Crossover point and blank-rate interval reveal the in situ • fracture pressure

Plot of injection pressure versus rate for KB-503, In Salah.

B. Bohloli et al. / International Journal of Greenhouse Gas Control 61 (2017) 85-93

Summary

- Phil and Tip have a 'can-do' attitude to global CCS! 1.
- Argue for a basin pressure management and optimization approach 2.
- Most projects (Class A aquifers) will not have serious pressure limit problems 3.
- The projects that do have pressure limits (Class B aquifers) will need careful 4. pressure management during the operational lifetime
- For geomechanical risks, stress-aligned slip-prone faults/fractures are the 5. top issue
- Accurate determination of the stress field and stress tensor is usually a big 6. challenge for CO_2 storage projects